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Abstract. We extend Goodwillie’s classification of finitary linear functors to
arbitrary small functors. That is we show that every small linear simplicial
functor from spectra to pointed simplicial sets is weakly equivalent to a filtered
colimit of representable functors represented in cofibrant spectra. Moreover,
we present this classification as a Quillen equivalence of the category of small
functors from spectra to simplicial sets equipped with the linear model structure
and the opposite of the pro-category of spectra with the strict model structure.

1. Introduction

Calculus of homotopy functors is a method pioneered by T. Goodwillie, [20,
21, 22], to decompose any homotopy functor F : C → D between two sufficiently
nice model categories into a ‘Taylor tower’ F → . . . PnF → Pn−1F → . . . P0F ,
where F → PnF is the universal ‘polynomial’ approximation of F . For nice F and
sufficiently highly connected X ∈ C the tower ‘converges’ in the sense that there
is a weak equivalence F (X)→̃ holimn PnF (X).

The advantage of this representation of a functor F is that the homotopy fibers
DnF = hofib(PnF → Pn−1F ), called the homogeneous layers of the tower, have a
relatively simple description. For a homotopy functor F : Top∗ → Top∗ of based
spaces, it suffices to give one spectrum ∂nF with an action of Σn, called the ‘nth
derivative’ of F at ∗, to recover the value of DnF in all finite CW-complexes X:

(1) DnF (X) ' Ω∞(∂nF ∧hΣn X
∧n).

This feature allows for computational applications of Goodwillie’s calculus, [3, 17].
Since the machinery of homotopy calculus has proven to be an efficient com-

putational tool, many authors keep developing the machine itself, to apply it in
new setup. The question of generalization of Goodwillie’s calculus to arbitrary
model categories satisfying some reasonable assumptions was addressed recently
by L. A. Pereira, [27], G. Biedermann and O. Röndigs, [7], D. Barnes and R. El-
dred, [4]. The question of recovering the original functor F from the symmetric
sequence of its derivatives with some additional structure is addressed in the recent
work of G. Arone and M. Ching, [1, 2].
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In this paper we address a question requiring an extension of the calculus tech-
nique: what are the values of the homogeneous layers of the Taylor tower in infinite
spaces X?

Goodwillie has resolved this problem in [22] by assuming additionally that the
functor F is finitary, i.e., F commutes with filtered homotopy colimits, up to homo-
topy, so that its values in infinite spaces are determined, up to a weak equivalence,
by the values of F in finite spaces.

Under this assumption, the formula (1) provides a complete classification of
homogeneous functors. 1-homogeneous functors are also called linear. More ex-
plicitly, a functor F : C → D of two model categories is called linear if it takes
homotopy pushout squares to homotopy pullback squares and F is reduced,i.e.,
F (∗) ' ∗.

Let us denote by S the category of pointed simplicial sets, also called spaces; Sp
is the (Bousfield-Friedlander) category of spectra considered as a simplicial model
category.

Goodwillie’s classification tells us that if F : S → S is a finitary linear functor,
then F (X) ' Ω∞(∂1F ∧X) for all X ∈ S. It may be carried over to a classification
of finitary linear functors G : Sp → S as G(Y ) ' Ω∞(∂1F ∧ Y ) for all cofibrant
Y ∈ Sp. We suggest to extend this classification further, so that it would apply to
all small linear functors, i.e., commuting with λ-filtered colimits for some cardinal
λ. The category of small simplicial functors from spectra to spaces is denoted by
SSp. For any (large) simplicial category E, the category of small functors, SE is
a locally small category; for basic model categorical techniques in such categories
see [12],[13]; for category-theoretical foundations see [15, 14].

The basic building blocks of our classification are the representable functors
RE(Y ) = hom(E, Y ), for some cofibrant Y ∈ Sp. To turn RE into a linear functor
the reader may precompose it with a fibrant replacement in spectra. We have
found a more elegant way to make this functor homotopy meaningful: consider
the fibrant-projective model structure on SSp introduced in [5] (fibrations and
weak equivalences are the natural transformations inducing fibrations and weak
equivalences respectively, between the values of the functors in fibrant objects),
so that every representable functor is (fibrant-projectively) weakly equivalent to a
proper linear functor. Notice that the representable functors are not finitary, unless
represented in compact spectra. If we consider a filtered colimit of representable
functors, then we obtain a linear functor again, since filtered colimits commute
with homotopy pullbacks in the category of spaces. The main result of this paper
is that these are all the possibilities, every linear functor is (fibrant-projectively)
weakly equivalent to a filtered colimit of representable functors. We formulate this
result for a general combinatorial proper simplicial stable model category E with
a view towards a general classification of n-homogeneous small simplicial functors.

Theorem (4.3). Let F ∈ SE be a linear functor. Then there exists a filtered
diagram J and a functor G = colimj∈J R

Xj with cofibrant Xj ∈ E for all j ∈ J
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and a weak equivalence f : F̃ → G for some cellular approximation F̃→̃F in the
fibrant-projective model structure.

This classification can be viewed as a Quillen-equivalence of the linear model
structure on the category of small functors and the opposite of the category pro-E,
provided that the linear model structure on SE exists. The linear model structure
is a (left Bousfield) localization of the fibrant-projective model structure, and we
managed to construct it under an additional assumption that all objects in E are
cofibrant.

A similar result was obtained in [9] for small spectral functors from spectra
to spectra, though we claimed the classification of all small spectral homotopy
functors in that paper. The reason is that every small spectral homotopy functor
is linear, hence there is no interesting calculus theory for spectral functors.

The paper is organized as follows.
In Section 2 we recall basic facts about pro-categories and construct a left adjoint

to the pro-representable functor, which allows us to view the opposite of the pro-
category as a reflective subcategory of the category of small simplicial presheaves.
If E is a proper combinatorial simplicial model category, then we show that this
is a Quillen adjunction, provided that the category of small functors is equipped
with the fibrant-projective model structure and pro-E is equipped with the strict
model structure.

In Section 3 we construct a (non-functorial) localization Q in SE such that the
local objects are precisely the fibrant linear functors. Note that the construction
of Q = P1 is performed by a completely model-categorical technique and does
not rely on Goodwillie’s ideas, using the fat small-object argument instead [26].
Similar construction is possible for an arbitrary polynomial approximation Pn. If
all objects in E are cofibrant, then we are able to construct the Q-localization of
SE in order to obtain the linear model structure. We do use a generalization of
Goodwillie’s technique due to L.A. Pereira, [27] in this argument.

In Section 4 we prove our main classification result. And finally in Section 5 we
present our classification as a Quillen equivalence, provided that the linear model
structure was established on the category of small functors. The Appendix is
devoted to the proof of a technical lemma establishing the conditions sufficient for
a reflection, which is also a Quillen adjunction to be a Quillen equivalence. It seems
useful to separate this lemma for future reference, since similar considerations were
used in recent papers, [5, 9, 11].

2. Preliminaries on pro-categories

In this section and all over the paper we use the adjective ‘simplicial’ to denote
enrichment over the pointed simplicial sets, S, though the results of this section
apply to the unpointed simplicial sets as well.
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Let E be a complete and cocomplete simplicial category. That means the hom-
sets of E are pointed simplicial sets, and in addition E is tensored and cotensored
over the pointed simplicial sets. The goal of this preliminary section is to show
that the opposite of the category pro-E is equivalent to a reflective subcategory
of small functors from E to spaces. If we work with the fibrant-projective model
structure on the category of small functors [5, 3.6], this adjunction is a Quillen
pair and it carries over to the level of the homotopy categories.

We start from a simpler adjunction:

(2) Z : SE
,,

Eop :Y,? _oo

where Y (E) = RE(−) = homE(E,−) and Z(F ) = hom(F, IdE) =
∫
E∈E homE(F (E), E).

The left adjoint Z(F ) exists since all F ∈ SE are small functors. The adjointness
is readily verified:

homEop(Z(F ), E) = homEop(hom(F, IdE), E) = homE(E, hom(F, IdE)) =

homSE(E ⊗ F, IdE) = homSE(F, IdEE ) = homSE(F,RE) = homSE(F, Y (E)).

Let us recall the definition of the pro-category for a given category E. The
objects of the category pro-E are cofiltered diagrams of objects of E, i.e., for every
filtering I, any functor X : Iop → E is a pro-object. We denote this pro-object as
X• = {Xi}i∈I .

A morphism f : {Xi}i∈I → {Yj}j∈J between two pro-objects is given by a func-
tion ϕ : obj(J) → obj(I) and a morphism in E f : Xϕ(j) → Yj for all j ∈ J such
that for all j1, j2 ∈ J there exists i ∈ I with maps ι1 : ϕ(j1)→ i and ι2 : ϕ(j2)→ i
the diagram

Xi

X(ι1)
//

X(ι2)

��

Xϕ(j1)

fj1
// Yj1

��

Xϕ(j2)
fj2

// Yj2

commutes. Formally,

hompro-E({Xi}, {Yj}) = lim
j∈J

colim
i∈I

homE(Xi, Yj).

The category of pro-objects in E is enriched over the category of simplicial sets
with the simplicial hompro-E(−,−) calculated by the above rule, while taking
homE(−,−) to be the simplicial hom-functor in the category E.

The category of small functors SE consists of small functors as objects and
natural transformations as morphisms. We recall that a functor F : E → S is
small if it is a left Kan extension of its restriction to some small subcategory;
equivalently, small functors are small weighted colimits of representable functors.

The restriction of the Yoneda embedding Y : (pro-E)op → Spro-E to the sub-

category E
c
↪→ pro-E is a functor P : (pro-E)op → SE defined as a composition
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P = c∗Y and sending every pro-object X• into the pro-representable functor
hompro-E(X•,−) : E→ S. By the definition of morphisms in the category pro-E, the
pro-representable functor hompro-E({Xi},−) = colimi∈I homE(Xi,−) is a filtered
colimit of representable functors RXi over I. In particular, every pro-representable
functor is small.

Our goal in this section is to show that the functor P has a left adjoint.

Proposition 2.1. The functor P : (pro-E)op → SE has a left adjoint O : SE →
(pro-E)op.

Proof. We shall use the simpler adjunction (2) constructed above, Freyd’s adjoint
functor theorem and the fact that the category of small simplicial functors is class-
finitely presentable [13, 2.2].

Let SE 3 F = colimi∈I Ci, where Ci is a finitely presentable objects in SE for all
i. Then,

homSE(F, PX•) = homSE(colim
i∈I

Ci, colim
j∈J

RXj) = lim
i∈I

homSE(Ci, colim
j∈J

RXj) =

lim
i∈I

colim
j∈J

homSE(Ci, R
Xj) = lim

i∈I
colim
j∈J

homEop(ZCi, Xj) =

lim
i∈I

colim
j∈J

homE(Xj, ZCi) = hompro-E({Xj}, {ZCi}) = hom(pro-E)op({ZCi}, {Xj}).

The representation of F as a filtered colimit of compact objects is not unique,
but if we take any representation of this kind F = colimi∈I Ci, then the map
f : F → colimi∈I R

ZCi = P{ZCi} is as a solution set, since, according to the
computation above, every map F → PX• factors through f . Freyd’s adjoint
functor theorem implies the existence of the left adjoint for P , and we can compute
its value, up to an isomorphism, by choosing a representation for F and assigning
OF = {ZCi}i∈I . �

Let us assume now that E is a (stable) proper, combinatorial, simplicial model
category. (Stability is not used in the following proposition, but will be used
later). Then the category of small functors SE may be equipped with the fibrant-
projective model structure constructed in [5, 3.6]. Fibrant-projective weak equiva-
lences and fibrations are the natural transformations of functors inducing levelwise
weak equivalences or fibrations between their values in fibrant objects. The cate-
gory of pro-objects in E may be equipped, in turn, with the strict model structure,
[25], where a map of pro-object is a weak equivalence or a cofibration if it is an
essentially levelwise weak equivalence or an essentially levelwise cofibration.

We conclude the categorical preliminaries by the following proposition that
states, essentially, that the opposite of the homotopy category of pro-E is a co-
reflective subcategory of the homotopy category of small functors with the fibrant-
projective model structure.
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Proposition 2.2. The pair of adjoint functors

P : (pro-E)op -- SE :O,nn

constructed in Proposition 2.1 is a Quillen pair if the category of small functors
SE is equipped with the fibrant-projective model structure and the category pro-E is
equipped with the strict model structure.

Proof. It suffices to show that the right adjoint P preserves fibrations and trivial
fibrations.

Consider a trivial fibration or a fibration f op : Y• → X• in (pro-E)op, i.e.,
f : X• → Y• is a trivial cofibration or a cofibration in the strict model struc-
ture on pro-E, which means f is an essentially levelwise trivial cofibration or an
essentially levelwise cofibration, where ‘essentially’ means ‘up to reindexing’.

Let fi : Xi → Yi, i ∈ I be a levelwise trivial cofibration or a levelwise cofibra-
tion representing f . Recall that PX• = colimi∈I R

Xi , PY• = colimi∈I R
Yi . Then

Pf : colimi∈I R
Xi → colimi∈I R

Yi is a trivial fibration or a fibration, respectively,
in the fibrant-projective model structure, since each fi induces a trivial fibration
or a fibration of representable functors in the fibrant-projective model structure,
and filtered colimits preserve levelwise trivial fibrations and fibrations. �

3. Construction of the linear model structure

The main objective of our work is to classify linear functors from a stable sim-
plicial combinatorial model category E to simplicial sets, up to homotopy. The
most convenient way to do so is to define a linear model category structure on the
category of small functors with fibrant objects being exactly the fibrant (i.e., as-
suming fibrant values in fibrant objects of E) linear functors, and to find a familiar
Quillen equivalent model for this category. This section is devoted to construction
of the linear model structure.

In the previous work, [6], the linear model category of functors from spaces to
spaces was constructed in two stages. First we defined the homotopy model struc-
ture on SS . Next, we used the technique of Goodwillie calculus to further localize
the homotopy model structure and obtain the linear model structure. Goodwillie’s
construction was extended by Luis Pereira, [27], to more general model categories,
so we could proceed by the same route, but we prefer to give a straightforward
construction of the linear model structure, also introducing an alternative method
allowing for construction of Goodwillie’s polynomial approximation in fairly arbi-
trary model categories.

We start from the fibrant-projective model structure on the category of small
functors (i.e., weak equivalences and fibrations are levelwise in fibrant objects),
since we need to compare our model category with pro-E (see Section 2). But
the general technique of localization we are about to describe may be applied to
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the projective model structure also, as to any class-cofibrantly generated model
structure on the category of small functors.

Fibrant linear functors are the local objects with respect to the following class
of maps:

F =

hocolim(RB ← RD → RC)→ RA

∣∣∣∣∣∣∣
A //

��

B

��

C // D

homotopy pushout in E

 .

We recall a few basic definitions for the reader’s convenience.
A fibrant objectW is called F -local if for all f ∈ F the induced map mor(f,W ) is

a weak equivalences of simplicial sets. As observed in [19], it is an easy computation
based on Yoneda’s lemma to show that fibrant linear functors are precisely the F -
local objects in SE.

A map f : F → G is an F -equivalence if for every cofibrant replacement f̃ → f
and for every F -local functor W the induced map hom(f̃ ,W ) is a weak equivalence
of simplicial sets.

The class of generating trivial cofibrations for the fibrant-projective model struc-
ture is

J = {RA⊗K ↪→ RA⊗L |A ∈ E fibrant; K ˜↪→L generating triv. cofibration in S}.

Construction of linear approximation. Our construction relies on the recently
developed fat small object argument [26]. Namely we use [26, Corollary 5.1] stating
in particular that in a κ-combinatorial model category every cofibrant object is a
κ-filtered colimit of κ-presentable cofibrant objects.

Here we collect all the assumptions about the model category E necessary for
constructing localizations in the functor category SE. We assume throughout this
section that E is a simplicial, combinatorial model category. Since the range cate-
gory S is strongly left proper (see [18, Definition 4.6] or [5, Definition 3.5]) by [5,
Theorem 3.6] the functor category SE with the fibrant-projective model structure
is left proper; it is also right proper, since S is right proper. Let us fix a cardinal
κ such that the model category E is κ-combinatorial, i.e., the domains and the
codomains of the generating (trivial) cofibrations are κ-presentable, and the class
of weak equivalences is a κ-accessible subcategory of the category of morphisms
of E. Since E is an accessible category, every small functor F ∈ SE is µ-accessible
for some cardinal µ. We do not require in this section that E be a stable model
category. We will need this assumption for the classification theorem only.

Definition 3.1. Let F ∈ SE be a small functor of accessibility rank µ. Put
λF = max{κ, µ}+�max{κ, µ}, and denote by EλF ⊂ E the subset of λF -presentable
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objects. We define

FλF =

hocolim(RB ← RD → RC)→ RA

∣∣∣∣∣∣∣
A //

��

B

��

C // D

homotopy pushout in EλF

 .

and

JλF = {RA⊗K ↪→ RA⊗L |A ∈ EλF fibrant; K ˜↪→L generating triv. cofibration in S}.

Remark 3.2. We have to choose the successor cardinal max{κ, µ}+ to ensure that
the subcategory of weak equivalences in E is still λF -accessible.

Proposition 3.3. For any F ∈ SE there exists an F-equivalence ηF : F → QF ,
such that QF is a fibrant F-local functor.

Proof. We form the set of horns on FλF by first replacing every map in FλF with

a cofibration, obtaining the set F̃λF , and then forming a box product with every
generating cofibration in S:

Hor(FλF ) = {A⊗∆n
∐

A⊗∂∆n

B ⊗ ∂∆n → B ⊗∆n | (A ↪→ B) ∈ F̃λF and n ≥ 0}

A simple adjunction argument implies (see e.g. [23]) that if a fibration X →
∗ has the right lifting property with respect to Hor(FλF ), X is FλF -local, and
therefore, to construct a localization of a small functor F ∈ SE with respect to
FλF , it suffices to apply the small object argument for the map F → ∗ with respect
to the set L = Hor(FλF )∪JλF . We obtain a factorization F ↪→ Q(F ) � ∗, where
the cofibration is an L-cellular map and the fibration has the right lifting property
with respect to K.

We omit the standard verification based on the left properness of SE, [5, Sec-
tion 4], that the cofibration ηF : F ↪→ QF is an FλF -equivalence, and conclude
that QF is a homotopy localization of F with respect to FλF .

Notice that QF is obtained as a colimit of λF -accessible functors, and therefore
QF is itself a λF -accessible functor.
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For any homotopy pushout square we compute the corresponding homotopy
pushout square of cofibrant objects

(3) Ã
�_

�� ��

� � //
_�

��

B̃
$d

$$ $$

��

A //

��

B

��

C̃

�^

�� ��

// B̃
∐

Ã C̃

#c

##

C // D,

obtaining a cofibrant object C̃ ←↩ Ã ↪→ B̃ in E·←·→· with the projective model
structure. Left properness of E implies, by the cube lemma, [24, 5.2.6], that the
induced map B̃

∐
Ã C̃ → D is a weak equivalence. Now we apply [26, Corollary 5.1]

to the class of cofibrant objects in the category E·←·→· with the projective model
structure and obtain the diagram C̃ ←↩ Ã ↪→ B̃ as a λF -filtered colimit of diagrams
{Ci ←↩ Ai ↪→ Bi}i∈I with Ai, Bi, Ci cofibrant objects of EλF for all i ∈ I.

Since E is λF -combinatorial, the λF -filtered colimits are homotopy colimits,
hence the induced map colimi∈I(Ci

∐
Ai
Bi)→ B̃

∐
Ã C̃ is a weak equivalence.

Because QF is a λF -accessible functor, and since QF is FλF -local, it converts
homotopy pushouts of λF -presentable objects into homotopy pullbacks. Since
filtered colimits commute with homotopy pullbacks, we obtain

QFÃ = QF (colim
i∈I

Ai) = colim
i∈I

QFAi = colim
i∈I

holim

(
QFCi → QF

(
Ci
∐
Ai

Bi

)
← QFBi

)
=

holim colim
i∈I

(
QFCi → QF

(
Ci
∐
Ai

Bi

)
← QFBi

)
=

holim

(
QF (colim

i∈I
Ci)→ QF colim

i∈I

(
Ci
∐
Ai

Bi

)
← QF (colim

i∈I
Bi)

)
=

holim

QF (C̃)→ QF

C̃∐
Ã

B̃

← QF (B̃)

 .

Moreover, the functor QF preserves the slanted weak equivalences in (3), since
each of these maps may be presented as a λF -filtered colimit of weak equivalences
of λF -presentable objects, and the latter are preserved by QF , since for every weak
equivalence of λF -presentable objects ϕ : X→̃Y , QF converts homotopy pushouts
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of the form
X

/o

ϕ
//

�O ϕ
��

Y

Y Y

to homotopy pullbacks.
Therefore QF takes any homotopy pushout square to a homotopy pullback

square. In other words, QF is F -local or linear. In addition, the coaugmentation
map ηF : F ↪→ QF is an FλF -equivalence by construction, but every F -local func-
tor is also FλF -local, and hence every FλF -equivalence is also an F -equivalence.
We conclude that QF is a (non-functorial) homotopy localization of F with respect
to F . �

The construction Q(−) depends on the accessibility rank of the entry functor,
therefore fails to be functorial though it can easily be made functorial on any
subcategory of functors of limited accessibility rank. We define separately what it
does on maps.

For every natural transformation of functors f : F → G, we define Qf as a
lifting in the diagram

F� _

ηF
��

f
// G

ηG
// QG

����

QF //

Qf

66

∗
The lift exists since the left vertical map is L-cellular and the right vertical map
is L-injective by construction.

Perhaps we will have to choose Qf out of many maps that are simplicially
homotopic to each other, but the important property satisfied by any of these
choices is the commutativity of the square

(4) F� _
ηF
��

f
// G� _

ηG
��

QF
Qf
// QG.

The following proposition is a standard property of localization constructions.

Proposition 3.4. Let f : F → G be a natural transformation of two functors in
SE, then Qf is a weak equivalence if and only if f is an F-equivalence.

Proof. If f is an F -equivalence, then so is Qf by the ‘2-out-of-3’ property for F -
equivalences in the commutative square (4). Hence Qf is an F -local equivalence
of F -local objects, i.e., a weak equivalence by the F -local Whitehead theorem, [23,
3.2.13].
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Conversely, if Qf is a weak equivalence, then Qf is also an F -equivalence and, by
the ‘2-out-of-3’ property, in (4) again, we conclude that f is an F -equivalence. �

To establish the existence of the left Bousfield localization with respect to Q we
need to use an alternative construction of the linearization by L. A. Pereira, [27].
This is a generalization of Goodwillie’s technique from [22] and its advantage is that
the construction uses only finite homotopy pullbacks and filtered colimits of func-
tors and therefore commutes with finite homotopy limits by [27, Proposition 4.10],
allowing for verification of the analog of Bousfield-Fridlander A6 condition. The
disadvantage is that it applies only to homotopy functors.

The first stage of application of Pereira’s linearization is therefore a replacement
of a functor by a homotopy functor. One way of doing it is to localize SE with
respect to the class of maps {RB → RA |A→̃B weak equivalence in E}. See for
example [9] for a similar construction when E = Sp. The problem with this
approach is, that similarly to the construction of Q we cannot make sure that the
A6 condition is satisfied, unless the theory of equivariant nullifications is worked
out, or the theory of localizations in class-combinatorial model categories [13] is
sufficiently developed.

Assumption. To construct this localization only, we shall assume from now on
that all objects of E are cofibrant. If this is not so, we can replace our combinatorial
model category E with a Quillen equivalent model in which all objects are cofibrant,
[16].

Proposition 3.5. Let E be a simplicial model category, and F : E→ S a simplicial
functor. Suppose that f, g : E1 → E2 are simplicially homotopic maps in E, then
Ff, Fg : FE1 → FE2 are simplicially homotopic maps in S.

Proof. Let h ∈ homE(E1 ⊗ J,E2) = homE(E1, E2)J be a simplicial homotopy be-
tween f and g, where J a generalized interval, [23, 9.5.5]. Every simplicial functor
F is equipped with a natural map ε : homE(E1, E2)→ homS(FE1, FE2).

Then the simplicial homotopy between Ff and Fg is εJ(h) ∈ homS(FE1, FE2)J =
homS(FE1 ⊗ J, FE2). �

Corollary 3.6. Every simplicial functor F : E → S preserves weak equivalences
between objects which are both fibrant and cofibrant.

Proof. Weak equivalences between fibrant and cofibrant objects are homotopy
equivalences, hence by [23, 9.5.24(2)], simplicial homotopy equivalences. Propo-
sition 3.5 implies then that any simplicial functor preserves simplicial homotopy
equivalences and hence weak equivalences between fibrant and cofibrant objects.

�

Let fib: E → E be an accessible fibrant replacement functor equipped with a
natural transformation η : IdE → fib, then according to the corollary above, for any
F ∈ SE, there is a fibrant-projectively equivalent homotopy functor Fη : F→̃F ◦fib.
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Recall that Q-fibrations are the maps with the right lifting properties with
respect to the fibrant-projective cofibrations that are also Q-equivalences.

Theorem 3.7. Let E be a combinatorial simplicial model category such that all
objects of E are cofibrant. Then there exists the left Bousfield localization of the
fibrant-projective model structure with respect to Q. In other words, there exists a
model structure on the category of small functors SE with weak-equivalences being
the Q-equivalences and the fibrations being the Q-fibrations.

Proof. We will use the non-functorial version of the Bousfiled-Friedlander local-
ization technique developed in [5, Appendix A]. We have constructed so far a
non-functorial localization construction Q in Proposition 3.3. To complete the
proof of the theorem we need to verify the conditions A.2-6 of [5, Theorem A.8].

Condition A.2 was verified in the construction of Q, see diagram 4. Conditions
A.3 and A.4 follow from Proposition 3.4, since F -equivalences are closed under
retracts and satisfy the ‘2-out-of-3’ property.

Condition A.5 is verified by choosing a cardinal λ sharply bigger than the acces-
sibility ranks of the functors constituting a commutative square, and then applying
the functorial small object argument with respect to Hor(Fλ) ∪ Jλ.

Condition A.6 relies on our assumption that all objects of E are cofibrant, but
we believe it is possible to prove it more generally. Given a pullback square

W //

g
��

X

f
��

Z
h
// Y

with h a Q-fibration and f a Q-equivalence, if we precompose each functor with
the fibrant approximation functor fib: E→ E, then we obtain a homotopy pullback
square of homotopy functors by Corollary 3.6 and by assuming that all objects in
E are cofibrant. Notice that precomposition with fib produces a weakly equivalent
functor in the fibrant-projective model structure. Applying [27, Proposition 4.10],
we obtain a homotopy pullback square

P1 ◦W ◦ fib //

P1(g◦fib)
��

P1 ◦X ◦ fib

P1(f◦fib)
��

P1 ◦ Z ◦ fib // P1 ◦ Y ◦ fib,

in which P1(f ◦ fib) is a weak equivalence, hence its base change P1(g ◦ fib) is a
weak equivalence too. Therefore g is an F -equivalence and, by Proposition 3.4, g
is also a Q-equivalence.

This completes the required verification and we conclude that if all objects of E
are cofibrant, then SE may be equipped with the Q-local model structure. �
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4. Classification of small linear functors

In this section, we present a classification of small linear functors from a stable
(= pointed model category such that its homotopy category is triangulated) combi-
natorial model category E to pointed simplicial sets S. These are the small functors
taking homotopy pushouts (=homotopy pullbacks) to homotopy pullbacks. Since
every small functor F ∈ SE is a weighted colimit of representable functors, it sends
the zero object of E to the one-point space (i.e. every small functor is reduced in
the pointed situation).

Let F be the class of maps ensuring that F -local objects are precisely the fibrant
linear functors. Namely,

F =

hocolim

 RD //

��

RB

RC

 −→ RA

∣∣∣∣∣∣
A //

��

B
��

C // D
– homotopy pullback inE

 .

Our goal is to show that every linear functor is (fibrant-projectively) weakly
equivalent to a filtered colimit of functors represented in cofibrant objects, i.e. to
an image of a cofibrant pro-spectrum under the restricted Yoneda embedding P
constructed in Section 2.

We begin with the lemma stating that filtered colimits of representable func-
tors are closed under filtered colimits. In other words, filtered colimits of filtered
colimits of representable functors are again filtered colimits.

It follows from the fact that if F is a filtered colimit of filtered colimits of
representable functors, then F = P (O(F )), hence it is a pro-representable functor.

Lemma 4.1. The full subcategory generated by the filtered colimits of representable
functors is closed under filtered colimits in SE. Moreover, the subcategory of filtered
colimits of functors represented in cofibrant objects is also closed under filtered
colimits.

The proof is identical to the proof of the same lemma for spectral functors [9,
Lemma 5.1].

In the next lemma we show that any representable functor RX smashed with a
finite space A is F -equivalent to a representable functor again, cf. [11, Lemma 3.1].

Lemma 4.2. Let A ∈ S be a finite space and X is a fibrant object of E. Then the
functor A ∧RX is F-equivalent to Rhom(A,X).

Proof. If A = ∂∆n
+, then the proof proceeds by induction on n, cf. [11, Lemma 3.1].

For n = 0 the statement is trivial, since ∂∆0
+ = ∗ and ∗∧RX = Rhom(∗,X) = R0 = ∗

this is a constant functor assuming the value ∗ in every object.

Suppose for induction that ∂∆n−1
+ ∧ RX F' Rhom(∂∆n−1

+ ,X), where
F' means F -

equivalent. Since for a fibrant X ∈ E the functor RX is cofibrant in the fibrant-

projective model structure, the natural map ∆n−1
+ ∧ RX → Rhom(∆n−1

+ ,X) is an
F -equivalence, for the domain of this map is weakly equivalent to RX and the
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weak equivalence hom(∆n−1
+ , X)→̃hom(S0, X) = X induces the F -equivalence

Rhom(∆n−1
+ ,X) F' RX coming from the homotopy pullback square

hom(∆n−1
+ , X)

/o
//

�O

��

X

X X.

Therefore

∂∆n
+ ∧RX ' colim


∂∆n−1

+ ∧RX
� _

��

� � // ∆n−1
+ ∧RX

∆n−1
+ ∧RX

 F'

hocolim


Rhom(∂∆n−1

+ ,X)

��

// Rhom(∆n−1
+ ,X)

Rhom(∆n−1
+ ,X)

 F
'−→ R

hom(∆n−1
+

∐
∂∆n−1

+
∆n−1

+ ,X)

' RX
∂∆n

+
.

In general, a finite space A is obtained by a finite sequence A0 → A1 → . . . Am,
where A0 = ∗ and Am = A, and

∂∆ni
+� _

��

// Ai� _

��

∆ni
+

// Ai+1

is a (homotopy) pushout for all 0 ≤ i ≤ m.
We finish the proof by induction on i, for 0 ≤ i ≤ m. Again, for i = 0 the

statement is trivial, and assuming the statement for i, we conclude that it is also
true for i+ 1 since

hom


∂∆ni

+� _

��

// Ai� _

��

∆ni
+

// Ai+1

, X


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is a homotopy pullback square in E, and hence

Ai+1 ∧RX ' colim


∂∆ni

+ ∧RX
� _

��

� � // Ai ∧RX

∆ni
+ ∧RX

 F'

hocolim


Rhom(∂∆

ni
+ ,X)
� _

��

� � // Rhom(Ai,X)

Rhom(∆
ni
+ ,X)

 F' Rhom(Ai+1,X)

�

Theorem 4.3. Let F ∈ SE be a linear functor. Then there exists a filtered diagram
J and a functor G = colimj∈J R

Xj with cofibrant Xj ∈ E for all j ∈ J and a

weak equivalence f : F̃ → G for some cellular approximation F̃→̃F in the fibrant-
projective model structure.

Proof. Since F is a linear functor, it is also a homotopy functor, hence, by [5,
Proposition 5.8], there exists a cellular approximation F̃→̃F such that for some
cardinal λ there is a transfinite sequence of functors F̃ = colimi≤λ F̃i, and F̃i is

obtained from F̃i−1 by attaching a generating cofibration of the form A ∧ RX ↪→
B ∧ RX for every successor cardinal i ≤ λ and F̃i = colima<i F̃a for every limit
ordinal i ≤ λ. The cofibration A ↪→ B is a generating cofibration in S and therefore
A and B are finite simplicial sets. Moreover, the representing object X ∈ E may
be chosen to be fibrant and cofibrant, since F is a homotopy functor.

By [11, Lemma 3.3], there exists a countable sequence {F ′k}k<ω such that F ′0 = ∗,
F̃ = colimk<ω F

′
k and for each k > 0 there is a pushout square∨

s∈Sk−1

As ∧RXs //

� _

��

F ′k−1

��∨
s∈Sk−1

Bs ∧RXs // F ′k,

where the coproduct is indexed by the subset Sk−1 ⊂ λ corresponding to the
cells coming from various stages of the original sequence {F̃i}i≤λ, such that their
attachment maps factor through the (k− 1)-st stage of the previously constructed
sequence.

The coproduct of maps in the commutative square above is a filtered colimit
of finite coproducts over the filtering Jk−1 of the finite subsets of Sk−1. Let us
think of the constant object F ′k−1 as a filtered colimit of the constant diagrams
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over the same filtering Jk−1. However, colimits over Jk−1 commute with pushouts,
and hence we obtain the representation of F ′k as a filtered colimit of pushouts of
the following form

(5)
∨

s∈Sk−1,j

As ∧RXs

ϕk−1,j

//

� _

��

F ′k−1

��∨
s∈Sk−1,j

Bs ∧RXs // Fk,j,

where Sk−1,j ⊂ Sk−1 is a finite subset corresponding to the element j ∈ Jk−1.
Now, by Lemma 4.2, there are F -equivalences in the fibrant projective model

category: As ∧RXs
F' Rhom(As,Xs) and Bs ∧RXs

F' Rhom(Bs,Xs).
Moreover, any finite coproduct of representable functors represented in fibrant

objects is F -equivalent to a representable functor by an inductive argument on
the number of terms that begins by observing that a coproduct of two repre-
sentable functors RU ∨ RV is F -equivalent to RU×V , since the map RU ∨ RV '
hocolim(RU ← R0 → RV ) −→ RU×V is an element in F corresponding to the
homotopy pullback square

U × V //

��

U

����

V // // 0.

In other words, the entries on the left side of the pushout square (5) are F -
equivalent to representable functors represented in fibrant objects of E.

Suppose for induction that there is an F -equivalence F ′k−1 → coliml∈Lk−1
RYl ,

where Lk−1 is a filtered category and the representing objects Yl ∈ E are fibrant
and cofibrant. Then we obtain a morphism of the pushout diagram (5) into a
commutative square that is also a homotopy pushout composed of filtered colimits
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of representable functors constructed as follows

(6) R

 ∏
s∈Sk−1,j

hom(As, Xs)


cof

ψk−1,j

//

��

colim
l∈L′k−1

RYl

��

∨
s∈Sk−1,j

As ∧RXs

� _

��

ϕk−1,j

//

gg

F ′k−1

��

@@

∨
s∈Sk−1,j

Bs ∧RXs //

ww

Fk,j

��

R

 ∏
s∈Sk−1,j

hom(Bs, Xs)


cof // colim

l∈L′k−1

RY ′l .

The diagonal maps on the left are obtained as compositions of the unit of the
adjunction (2.1) with a map induced by the cofibrant approximations in pro-E:

 ∏
s∈Sk−1,j

hom(As, Xs)


cof

�̃
∏

s∈Sk−1,j

hom(As, Xs), ∏
s∈Sk−1,j

hom(Bs, Xs)


cof

�̃
∏

s∈Sk−1,j

hom(Bs, Xs).

The universal property of the unit of adjunction guarantees the existence of a
natural map

R

∏
s∈Sk−1,j

hom(As, Xs)

−→ colim
l∈Lk−1

RYl .
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The corresponding map in the pro-category has a lift to the cofibrant replacement
of the constant pro-spectrum, since the pro-spectrum {Yl}l∈Lk−1

is (levelwise) cofi-
brant.  ∏

s∈Sk−1,j

hom(As, Xs)


cof

�O

����

{Yl}l∈Lk−1
//

88

∏
s∈Sk−1,j

hom(As, Xs)

The source of the dashed map in the diagram above may be replaced by an iso-
morphic pro-object {Yl}l∈L′k−1

with a final indexing subcategory L′k−1 ⊂ Lk−1, so
that the resulting map is reindexed into a natural transformation of contravariant
L′k−1-diagrams with a constant diagram in the target. The induced map in the
category of functors is denoted by ψk−1,j, and it factors through every stage of the
colimit. Thus the outer pushout diagram in (6) may be viewed as a filtered colimit
of pushout diagrams indexed by L′k−1.

Let us put

Y ′l = Yl × ∏
s∈Sk−1,j

hom(As, Xs)


cof

 ∏
s∈Sk−1,j

hom(Bs, Xs)


cof

.

This is a homotopy pullback in E, and hence RY ′l is F -equivalent to the homotopy
pushout of the corresponding representable functors in the fibrant-projective model
structure on the category of small functors SE.

Taking the filtered colimit of these commutative squares indexed by L′k−1, we ob-
tain the outer square of (6), and since filtered colimits preserve both F -equivalences
(by an argument simililar to [8, Lemma 1.2] and the fact that generating cofi-
brations in SE have finitely presentable domains and codomains) and homotopy

pushouts, we conclude that colim
l∈L′k−1

RY ′l is F -equivalent to the homotopy pushout of

the outer square of (6). Therefore the dashed arrow in (6) is an F -equivalence. In
other words, Fk,j is F -equivalent to a filtered colimit of representable functors.

Therefore F ′k = colimj∈Jk−1
Fk,j is a filtered colimit of functors F -equivalent

to filtered colimits of representable functors, which, in turn, is F -equivalent to a
filtered colimit of representable functors by Lemma 4.1.

Finally, F = colimk<ω F
′
k is a countable sequential colimit of filtered colim-

its of functors F -equivalent to representable functors, which may be reindexed
into a single filtered colimit of functors F -equivalent to representable functors by
Lemma 4.1. �
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5. The classification presented as a Quillen equivalence

The localization of the fibrant-projective model structure constructed in The-
orem 3.7 applies only for simplicial combinatorial model categories E, such that
all objects in E are cofibrant. On this assumption we prove a refinement of the
above classification of linear functors presenting it as a Quillen equivalence with
the opposite of the category of pro-objects in E.

Theorem 5.1. Let E be a simplicial combinatorial stable model category. Suppose

that all objects in E are cofibrant, then the Quillen adjunction O : SE
// (pro-E)op : P

rr

is a Quillen equivalence if SE is equipped with the linear model structure and pro-E
is equipped with the strict model structure.

The following lemmas precede the proof of this theorem.

Lemma 5.2. Let X• ∈ pro-E be a cofibrant object. Then, PX• ∈ SE is a fil-
tered colimit of representable functors and not necessarily cofibrant. Consider a

cofibrant replacement, p : P̃X•�̃PX•. Then the left adjoint O preserves this weak

equivalence: Op : OP̃X•→̃OPX•.

Proof. As the left Quillen functor O preserves weak equivalences between cofibrant
objects, it suffices to prove that O takes into a weak equivalence some cofibrant
approximation of P{Xi} = colimiR

Xi . Consider the cofibrant approximation:

q : hocolimiR
X̂i = PX• → PX•, where q is induced by the fibrant-projective

cofibrant approximations RX̂i→̃RXi , while the maps Xi ˜↪→X̂i are the functorial
fibrant approximations in E. PX• is cofibrant as a homotopy colimit of a diagram
with cofibrant entries (we assume here that a homotopy colimit is defined as a
coend with a projectively cofibrant, contractible diagram of spaces, i.e. a left
Quillen functor preserving cofibrant objects). By [16, 2.3(ii)], the map q is a
weak equivalence, since filtered colimits in the class-cofibrantly generated fibrant-
projective model structure on SE are homotopy colimits.

The left adjoint O preserves colimits and homotopy colimits as a left Quillen

functor, and hence the mapOq : OPX• → OPX• is essentially the mapOq : hocolimORX̂i →
colimORXi , or just Oq : hocolim X̂i → colimXi in the opposite of the strict model
structure on pro-E. However, the strict model structure on pro-E is class-fibrantly
generated, [10], and therefore the dual model structure is class-cofibrantly gener-
ated and the map Oq is a weak equivalence by [16, 2.3(ii)]. Therefore, Op is also
a weak equivalence. �

Lemma 5.3. The derived unit map uF : F → PÔF is a Q-equivalence for all
cofibrant F ∈ SE.

Proof. By Proposition 3.4, it suffices to check whether uF is an F -equivalence, i.e.
it suffices to verify that hom(ũF ,W ) is a weak equivalence for any F -local functor
W . By Theorem 4.3, W is weakly equivalent to a filtered colimit of representable
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functors represented in cofibrant objects of E, and hence W ' PX• for some
cofibrant X• ∈ pro-E.

By adjunction, the map hom(ũF , PX•) is naturally isomorphic to the map

hom(OP̃ ÔF ,X•)→ hom(OF,X•).

By Lemma 5.2, OP̃ ÔF ' OPÔF = ÔF , showing that the last map is a weak
equivalence. �

Proof of Theorem 5.1. To establish the required Quillen equivalence we will use
Lemma A.1. We need to verify two conditions:

(1) For all cofibrant F ∈ SE, the derived unit map uF : F → PÔF is a weak
equivalence;

(2) For all fibrantX• ∈ pro-Eop and for any cofibrant replacement p : P̃X•�̃PX•,

the map Op : OP̃X• → OPX• is a weak equivalence.

The first condition was verified in Lemma 5.3 and the second condition in
Lemma 5.2. �

Appendix A. Quillen equivalence with a reflective subcategory

This appendix is devoted to the proof of a general statement about Quillen
equivalences of model categories. That is, we analyse in detail the situation where
the right adjoint is a fully faithful embedding of categories and formulate suffi-
cient conditions to claim that in this particular case the adjunction is a Quillen
equivalence.

Lemma A.1. Let L : M 22 N : R
rr

be a Quillen pair. Suppose that the right
adjoint R is a fully faithful embedding of categories. Suppose in addition that

(1) For any cofibrant M ∈M, let j : LM ˜↪→L̂M be a fibrant replacement in N,

then the derived unit map M
u−→ RLM

Rj−→ RL̂M is a weak equivalence;

(2) For any fibrant N ∈ N, let p : R̃N�̃RN be a cofibrant replacement in N,

then Lp : LR̃N → LRN is a weak equivalence.

Then the Quillen pair (L,R) is a Quillen equivalence.

Proof. We need to show that for every cofibrant M ∈ M and for every fibrant
N ∈ N a map f : L(M)→ N is a weak equivalence in N if and only if the adjoint
map g : M → RN is a weak equivalence in M.

Suppose that f : L(M)→ N is a weak equivalence. Applying a fibrant replace-

ment on L(M), we obtain a trivial cofibration j : LM ˜↪→L̂M and a factorization of

f as f = f̂ j, where the lifting f̂ exists since N is fibrant. Moreover, f̂ is a weak
equivalence of fibrant objects by the ‘2-out-of-3’ property. The adjoint map g fac-
tors as a unit of the adjunction u : M → RLM composed with Rf : g = R(f)u,

but Rf = R(f̂ j) = R(f̂)Rj, and hence g = R(f̂)(R(j)u). Now, R(f̂) is a weak
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equivalence, since R is a right Quillen functor and preserves weak equivalences
of fibrant objects. The composed map R(j)u is a weak equivalence by the first
condition of the lemma.

Conversely, suppose that g : M → RN is a weak equivalence. Consider a cofi-

brant replacement p : R̃N�̃RN . Then, there exists a lift g̃ : M → R̃N in the
homotopy model structure. Note that g̃ is a weak equivalence of cofibrant objects
by the ‘2-out-of-3’ property, since g = pg̃. The adjoint map f : LM → N factors
as Lg followed by the counit c : LRN → N , which is a natural isomorphism for all
N , since R is fully faithful. However, Lg = LpLg̃, where Lp is a weak equivalence
by the second condition of the lemma and Lg̃ is a weak equivalence, since L is a
left Quillen functor. Hence f is a weak equivalence. �
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